

The FP7 project InFluENCE aims at improving the fundamental understanding and control of interfaces of a battery type based Li-ion and Na-ion active on materials:semi solid flow batteries (SSFB). The methods and techniques developed are however generic and could as well be implemented for conventional Liand Na-ion systems for the techniques that do not focus on flow aspects.

main objective is the Α investigation and optimization of the interfaces developing between the electrolyte and the electrochemically active material particles in fluid electrodes. The acquired knowledge would allow the chemical and morphological optimization of active materials as well as the design of optimized interfacial (also called layers artificial Solid Electrolyte Interfaces, art-SEI) capable of warrant stable interfaces.

A second main objective is the understanding and control the mechanical and conductive behaviours of the slurries. For this, it is necessary to determine the role of shape anisotropy and the overall nature (attractive or repulsive) of the short ranged interactions of the active materials besides the strength of the attractive forces for conductive nano-particles. The cross interaction should allow intimate contact between active material and the conductive particles.

More information: email: fp7-influence@vito.be <u>www.fp7-influence.eu</u>

Organizer: IREC Venue: IREC. Jardins de les Dones de Negre, 1. 2nd floor, Conference Room Sant Adrià del Besòs. 08930. (Spain).

This workshop will focus on rheology, electrochemical and system design for flow batteries in general, with special regards to the promising alternative based on Semi-Solid Flow Batteries

	Program
09:00 - 09:15	Opening & Registration
09:15 - 09:30	Welcome. Introduction by project coordinator
	Yolanda Álvarez Gallego, VITO, (Belgium)
09:30 - 09:55	Transfer Principles of Flow Battery Stack Design
	to Semi Solid Flow Batteries
	Jens Burfeind, Fraunhofer UMSICHT, (Germany)
09:55- 10:20	The 3D printing of a polymeric electrochemical
	cell body and its characterisation; use for energy
	storage cells
	Carlos Ponce de Leon, University of Southampton,
	(United Kingdom)
10:20 - 10:45	An Overview on Flow Battery Chemistry
	Belabbes Merzougui, Qatar Energy & Environment
	Research Institute, (Qatar)
10:45 - 11:15	Coffee Break
11:15 - 11:40	Performance and optimization of a flow capacitor
	with surfactants under continuous flow operation
	Juhan Lee, INM - Leibniz Institute for New
	Materials, (Germany)
11:40 - 12:05	Perspective on SSFB towards high-density
	electrical energy storage
	Cristina Flox, IREC, (Spain)
12:05 - 12:30	Rheology of SSFBs: some design aspects
	Michel Duits, University of Twente, (Netherland)
12:30 - 12:55	Standarization of flow batteries
	Grietus Mulder, VITO, (Belgium)
12:55 - 13:10	Final remarks & Workshop closing
	Joan Ramon Morante, IREC, (Spain).
	Online inscription

UNIVERSITEIT TWENTE.

Institut de Recerca en Energia de Catala

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under **grant agreement No 608621**.

CECKART